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Abstract

This paper presents an investigation of various machine
learning models for the classification of electroencephalo-
gram (EEG) data. Specifically, three different models, in-
cluding Convolutional Neural Network (CNN), Convolu-
tional Recurrent Neural Network (CRNN), and Convolu-
tional Recurrent Neural Network with Attention (CRNN
with Attention), were implemented, alongside Multi-layer
Perceptron (MLP) as the baseline. The models were trained
on data from subject 1 and all subjects, and the results
showed that the models trained on data from all subjects
outperformed those trained on data from subject 1 alone.
Additionally, the study examined the impact of time peri-
ods on accuracy and found that CNN achieved better results
with shorter time lengths, while CRNN and CRNN with At-
tention were better suited for longer periods. Finally, the
study introduced a majority voting ensemble method to en-
hance the classifiers’ performance, resulting in a test accu-
racy of 0.736 using a total of 64 CRNNs and CNNs.

1. Introduction
We mainly implemented two types of CNN-based mod-

els in this project. The first model is a pure CNN model
based on the paper [2]. It contains 3 convolutional layers as
the feature extractor and a fully connected layer as the clas-
sifier. This model architecture reaches great performance,
so we did not tune anything about it.

The second model is a combination of CNN and RNN
called CRNN. It makes sense to apply the RNN-based
model because the input is time series data. We also im-
plemented the network of a paper [1]. However, it turned
out that with the same architecture, the accuracy was much
worse than that of CNN even though the model was trained
to converge. We then tried to make the network deeper and
the kernel sizes smaller and found that the modified model
performed slightly better than CNN on the validation set.
Furthermore, we also introduced an attention mechanism
on the output of the RNN layers since RNN with attention
usually showed a better performance.

Finally, we elaborated on the ensembling technique in
order to investigate the relationship between the perfor-
mance and the number of models ensembled.

2. Results
This section presents the outcomes of our conducted ex-

periments. Initially, the models were exclusively trained on
the data of subject 1, and subsequently, on the data of all
subjects. The accuracy of the models was then evaluated
with respect to time. Finally, we attempted to improve our
results by testing various combinations of model types for
ensembling.

2.1. Optimize accuracy for subject 1

To study the accuracy of subject 1 under different train-
ing scenarios, We trained the four models - Multi-layer
Perceptron (MLP), Convolutional Neural Network (CNN),
Convolutional Recurrent Neural Network (CRNN), and
Convolutional Recurrent Neural Network with Attention
(CRNN with Attention) - under two different training sets,
data of subject 1 and data of all subjects. Then we evaluated
the models’ performances on the test set of subject 1.

The models were trained with rigorous precision, each
being run 5 times, and the average accuracy was computed
to provide a comprehensive overview of their performance.
The resulting accuracies are presented in table 1 and 2,
which provides a detailed breakdown of each model’s ac-
curacy on the validation and test sets.

According to the tables, when we used training data only
from subject 1, CRNN exhibited the highest accuracy of
0.488 on the validation set while CNN had the highest ac-
curacy of 0.404 on the test set. However, if we included
all subjects in our training data, both CNN and CRNN with
Attention demonstrated superior performance on the test set
with an accuracy of 0.452.

2.2. Optimize accuracy across all subjects

Furthermore, we extended the analysis to test model per-
formances on data from all subjects. Similar to the approach
on subject 1, each model was run 5 times and the average
accuracy was computed for each run. The results of this

1



analysis are presented in Table 2, which provides a detailed
breakdown of each model’s accuracy on the validation and
test sets. The analysis reveals that CNN demonstrated the
highest accuracies of 0.603 on the validation set and 0.602
on the test set.

2.3. Evaluate accuracy as a function of time

To study the relationship between classification accuracy
and time period, we tested different time length settings
starting from 300 to 1000 with a step of 50 on our CNN,
CRNN, and CRNN with Attention models. The results of
validation accuracy and test accuracy are shown in figure 1
and 2 respectively. Based on the result of validation accu-
racy, the optimal time length for CNN, CRNN, and CRNN
with Attention models are 450, 900, and 1000 respectively.
We applied these optimal period settings to ensemble mod-
els.

2.4. Ensemble

We introduced majority voting as our ensemble method
and tested multiple model-type combination settings. The
model-type combinations we tried included ensembling by
single model type, two model types, and all three model
types. For each model type, we applied the optimal time
length we mentioned earlier and trained 33 models.

2.4.1 Ensemble by single model type

The result is shown in figure 3, the best accuracy for CNN
is 0.688 (with 25 models), the best accuracy for CRNN is
0.661 (with 31 models), and the best accuracy for CRNN
with Attention is 0.675 (with 33 models).

2.4.2 Ensemble by two model types

The results are shown in figure 4, 5, and 6. The best ac-
curacy for CRNN with Attention + CRNN is 0.684 (with
56 models), the best accuracy for CRNN with Attention +
CNN is 0.731 (with 60 models), and the best accuracy for
CRNN + CNN is 0.736 (with 64 models).

2.4.3 Ensemble by all model types

The result is presented in figure 7. With 69 models, it
reaches the best accuracy of 0.734.

3. Discussion

In this section, we discussed the impact of the difference
in the training data, the performance comparison on differ-
ent model architectures, and the effect of the ensembling.

3.1. Data of subject 1 vs all subjects

As we can see in table 1 and 2, the accuracy of subject
1 is much lower than that of all subjects. Therefore, we
hypothesized that the distribution of data of subject 1 might
be more noisy or different from that of other subjects. In
addition, except that MLP can not fit the EEG data well,
all three CNN-based models’ test accuracies of subject 1
increase when training on all subjects. We could thus draw
a conclusion that the information from other subjects might
be helpful for the prediction of data from subject 1.

3.2. Model comparison

As we can see in table 2, all model types have perfor-
mance drops on the test set. It means that there might be a
bit of difference in the distributions of the train and test set.
It is worth noting that CNN reaches the best accuracy on
both validation and test sets, which shows that it is the most
robust model. Therefore, we assumed that the signals with
long time distances might not be critical for models to learn.
Instead, an appropriate design of a CNN architecture can be
powerful enough to capture most of the essential features.
Another interesting finding is that even though CRNN with
attention does not outperform CRNN without attention too
much on the validation set, it has significantly better accu-
racy on the test set. We thus concluded that the attention
mechanism not only leads to better fitting power but also
provides robustness for the CRNN model.

3.3. Different lengths of time

From figure 1 and 2, we observed that the validation ac-
curacy of CNN kept trending down when the time period
becomes greater than 500. Similar behavior was also ob-
served in test accuracy. On the other hand, for CRNN and
CRNN with Attention, there is no strong correlation be-
tween accuracy and time. Still, the accuracy can be slightly
improved with longer time periods. We assumed that the
reason why CRNN and CRNN with Attention can remain
stable accuracy when time length goes up is that the recur-
rent layers have the advantage to deal with time-related in-
formation, which CNN does not.

3.4. Ensemble

As we can see in figure 3, the accuracy of all three types
of the model increases as the number of models increases.
That is because the randomness during the training process
can still produce independent errors even though the model
type or the data are the same. This result is consistent with
what we have learned from class that the average model er-
ror will be reduced with more models ensembled.

Furthermore, we also observed from figures 4, 5, 6, and
7 that with the same number of models, the performance
of the model ensembled by more than just one model type
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beats the model ensembled by only a single model type.
That is because there is some difference between the dif-
ferent model types. Therefore, the unique strength of each
model type will be aggregated by ensembling. It is also
worth noting that both the model ensembled by CRNN and
CNN and the model ensembled by CRNN with Attention
and CNN are significantly better than the model ensembled
by two types of CRNNs. The reason is that the model struc-
tures of the two types of CRNNs are much alike compared
to CNN. We could thus conclude with the two findings men-
tioned in this paragraph that the more varied the models are,
the more improvement will be with the same number of the
models ensembled. This conclusion is also consistent with
what we have learned from class.

Finally, another interesting phenomenon we observed is
that with the same number of models, ensembling by either
type of CRNN with CNN has nearly the same accuracy as
by all three model types. That is also contributed by the
similarity of CRNN and CRNN with Attention. Hence, if
we want to pursue higher accuracy, instead of directly in-
creasing the number of all three model types, we should
just pick one of the CRNNs into our ensembling pool, and
try to include another model type with a different structure.
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Figure 1. Validation accuracy for the CNN, CRNN, and CRNN
with Attention models under different time periods from 300 to
1000.

Table 1. Validation and test accuracy for the MLP, CNN, CRNN,
and CRNN with Attention models trained on data of subject 1.

S1 Valid Accuracy S1 Test Accuracy
MLP 0.36666 0.32400
CNN 0.41667 0.40400

CRNN 0.48750 0.35200
CRNN w/ Attention 0.44167 0.37600

Table 2. Validation accuracy and test accuracy for the MLP, CNN,
CRNN, and CRNN with Attention models trained on data of all
subjects.

All Valid Accuracy S1 Test Accuracy All Test Accuracy
MLP 0.34752 0.28400 0.34086
CNN 0.60284 0.45200 0.60226

CRNN 0.57967 0.44400 0.52235
CRNN w/ Attention 0.58440 0.45200 0.56479
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Figure 2. Test accuracy for the CNN, CRNN, and CRNN with
Attention models under different time periods from 300 to 1000.

Figure 3. Test accuracy of ensembling by single model type under
different numbers of models from 1 to 33.

Figure 4. Test accuracy of ensembling by CRNNs with Attention
and CRNNs under different numbers of models from 2 to 66.

Figure 5. Test accuracy of ensembling by CRNNs with Attention
and CNNs under different numbers of models from 2 to 66.

Figure 6. Test accuracy of ensembling by CRNNs and CNNs
under different numbers of models from 2 to 66.

Figure 7. Test accuracy of ensembling by all three model types
under different numbers of models from 3 to 99.
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4. Appendix
This section shows the architectures of the networks we

implemented in this report. In addition, the details of the
training process will be illustrated.

4.1. CNN

We implemented the exact model in this paper [2].

4.2. CRNN

We designed a CRNN based on the paper [1]. To achieve
better performance, we made the network deeper and kernel
sizes smaller. Furthermore, we replaced GRU with Bidirec-
tional LSTM.

Firstly, the model has four convolutional layers. The
numbers of output channels are 16, 32, 64, and 128, while
the kernel sizes are (1,10), (21,1), (1,10), and (1,10) with
stride 1. In addition, all convolutional layers are followed
by a batch normalization layer, an ELU activation layer, and
a max pooling layer. The kernel sizes of max pooling lay-
ers are (1,4), (1,2), (1,2), and (1,2). A dropout layer with a
probability of 0.5 is added afterward.

Secondly, the output of convolutional layers will be flat-
tened on channel and height dimensions and fed into a 3-
layer Bidirectional LSTM with a hidden size of 128. If
not applying attention, the concatenation of the final state
of two directions will be taken. Otherwise, the attention-
weighted RNN outputs will be further concatenated and
projected to the same dimension with a fully connected
layer. Also, a dropout layer with a probability of 0.5 is
added afterward.

Finally, a fully connected layer with an output dimension
of the number of classes acts as the downstream classifier.

4.3. Training Details

We split 20% of the ”train valid” set as the validation set,
and trained models on the rest 80% of the data. The number
of epochs is 50 and the batch size is 64. We used Adam as
our optimizer with a learning rate of 1e-3. Lastly, we chose
the model with the best validation accuracy to evaluate on
the test set.
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